汽车底盘系统改装升级全攻略-您应该看一看
2014-08-21 09:28 艾森ECU升级(北京运营中心)
车身配重平衡(Coner Weight Balance)
底盘设定最重要的一项就是车身四个角落配重的平衡。配重平衡对一般道路行驶或是任何形式的比赛都是很重要的调整。做配重平衡时需要一组配重仪、耐心、和可调整四个角落车高的机构,对房车来说通常这个机构就是附有High-Low Kit的车高可调整避震器。进行车身配重平衡调整时必须非常的细心,否则结果可能比未调整前的情况更差。 第一步就是把车子正确的架在配重仪上,因为每一个角落的配重都是同等重要的,把胎压调好,因为胎压的高低会影响车高。最理想的配重就是左轮等于右轮,而且对角的重量和是相等的。大部分时候配重都会有所偏差,尤其是在载了二人以上时更是如此。车子载行驶时除了车辆本身的重量还要加上驾驶人、油料和乘客的重量,这都是必须考虑的项目。记录下四个轮子的荷重后,先把四个轮子的个别荷重加起来,就可以得到车辆的总重,再来是左侧两轮、右侧两轮、前两轮、后两轮、两组对角的重量和。对角的配重对操控的平衡非常的重要,理想的状况是两对角配重相等且等于车重的一半,如此一来左转和右转时的操控平衡将是相同的,如此一来过弯的速度也许不一定相等但是感觉却会是相同的。对于Oval比赛(如美国Daytona大赛的场地绕圈赛)或是道路比赛来说,对角的配重百分比可以比理想的50%来得多或少,以改善某一方向的过弯能力,但是也仅限于Oval或是同方向转弯较多的赛道。量出车子四个角落的配重后,接下来就是要调整各个角落的车高,以便改变个别的配重,荷重比理想荷重轻的角落必须升高,而太重的则是要降低。就像两人抬东西上楼梯时,位置比较低的一方会承受较多的重量,改变两方的高度差就可改变重量的分配,车身配重正是利用这个道理来做调整。改变车高的方法可以用垫片、或是采用有high-low kit的避震器。但是要特别注意的是,改变某一角落的配重会同时造成四个角落的配重变化。此外,升高一个角落不但会增加本身的荷重,也会增加对角的荷重,同时会减少其他两个角落的荷重。最好是在每一个角落做微调而避免只对一个角落做大幅的改变,虽然这可能会花比较多的时间但效果会是最好的。
悬吊测试的程序
进行悬吊设定时,你将会花很多的时间在进行调校和更换套件,实际的经验告诉我们,所有的改装部份中,防倾杆和避震器的调整对操控性的改善幅度最大。测试时,正确胎压的测定是底盘设定的第一步骤,在跑道上顺时针和逆时针方向的跑,量取胎温,胎温是你调整的依据,先从最基本的胎压和camber着手进行。你更可以藉由胎温数据和驾驶者的感受来作为设定操控平衡的依据。假如车子呈现转向不足的特性,那么叁考胎温后藉由改变防倾杆的防倾阻力来改善。侧向加速度(过弯g值)的改良同样也可利用这个方法,接下来在跑道上以低速和中速过弯来测试车子的平衡和敏感度,最后就是以高速弯道测试车身的空力特性。
胎温的重要性
当我们在跑道上测试一部车的操控性时,通常利用胎温和驾驶人的感觉来作为调整的依据,这对道路用车和叁赛车来说都是一样的,量取时每一个轮胎量胎面的内侧、中间、外侧三个点,分别记录下来,胎温在进行一部车的底盘设定时可提供最有用的线索,有时对胎温的量测甚至可说到了吹毛求疵的地步,而最终的结果通常是表现在码表上的测时数据。利用不同情况下胎温的数据我们可以用来调整:胎压、避震器阻尼设定、外倾角、车身防倾阻力分配、胎宽和瞬间的操控反应。
判读胎温
判读胎温之前最好先叁考所使用的轮胎原厂所提供的胎温工作范围,不过在目前国内代理商和消费者都不注重规格数据资料的情况下,这类的资料通常被理所当然的省略了,还好目前网际网路非常发达,有兴趣的读者可以的在网路上找到有关轮胎更多更重要的数据资料,在这里可提供大家做叁考的是大部分的轮胎工作温度范围都在165~250 F之间。一般来说工作温度越热的轮胎它的抓地力越好,上次我们也提过:胎质越软的轮胎聚热效果越好,因此Tread Wear在100以下的轮胎由于胎面聚热效果强,容易产生热溶现象,通常称为热溶胎。所以一旦出现整体胎温过高时,也许要考虑改用胎质较硬的轮胎。此外由于摩擦力会随着轮胎的负荷增加而增加,摩擦力的增加会伴随着热的产生,胎温的高低正可表现出轮胎的负荷及工作状态,所以当轮胎出现内侧、中间或外侧的胎温不平均时,正表示了这个轮胎胎印受力并不平均,不平均的受力当然无法将轮胎的性能完全发挥,因此悬吊设定的基本精神就是要让胎面的受力平均,充分发挥轮胎的抓地力。
赛车的悬吊测试
一部赛车没有经过不断的测试而想要得到良好的悬吊设定几乎是不可能的,测试越多竞争力就越强,因此所有的赛车预算都应该将测试经费计算在内。为了达到最佳的测试效果,测试前必须有完整的计划,在抵达测试场之前就必须先将车子准备妥当,并详细的记录车子测试前的设定,以作为回归基本设定的基础。 测试时先以最基本的设定开始,并且详细的记录车况、驾驶人的感觉、跑道的情况和天气状况。调整时每次只改变一个项目,并且改变的幅度要大到产生明显的影响,否则同时改变几个项目,面对一个结果却无法去判定是哪一个项目改变所造成的结果。 一般来说基本的测试包含了下列几项:
圆形跑道
在圆形跑道做测试可计算出侧向加速度,可充分的测试车子的抗侧倾能力、胎压和外倾角设定。也可让车手练习车子的平衡、油门的控制和油门对转向的影响、以及柔顺和稳定的重要。通常直径60公尺以上的圆形跑道就足够这一项测试所需,要记录的是车子所能承受的侧向加速度和胎温及胎温范围。
绕障碍筒
绕障碍筒可以训练驾驶人对车身瞬间操控变化的控制,和算出最佳的避震器阻尼设定,提高驾驶人对车子的感觉。记得要记录下每一次时间以及胎温的变化。
90度弯角测试
九十度弯的测试可以提高驾驶人对车子入弯特性的了解,并有助于避震器及toe-in及toe-out的设定。此外还可让驾驶人评断trail-brake的影响和方向盘操作的技巧。要记录的是时间、g值、速度、胎温和变化。
刹车测试
刹车的测试是要用来调整前后刹车的分配,理想的状态是前刹车『恰』比後刹车早锁死。这可能需要两位观察员分别观察前轮和后轮。要记录的是刹车分配器调整的状态以及跑道路面的情况。
一般道路的悬吊设定
并不是每个人都能把车子开上跑道做测试,尤其是那些没有叁加赛车但是却想改善操控性的人,所以如何对一般的的街车做设定也是大家所关心的。车子的设定主要根据两个方面,一个是实际的数据另一个是驾驶人的感受和喜好。我们都知道影响操控性最大的就是胎印,而胎印的最佳状态就是在最大的过弯力时轮胎是平贴于路面(胎温是平均的)。而你可以藉由胎温的量测了解轮胎是否平贴于路面、外倾角是否正确、胎压是否在正确的范围内。测试时如果能找到一个圆形跑到来测试这些数据是最理想也是最安全、最快最方便的,否则在人车稀少的宽广道路上测试是退而求其次的选择。如果你是在一般道路做这些测试时你至少需要胎温计、胎压计和记录表,至于g值分析仪可能就派不上用场了。因为是在一般的道路而非在封闭的跑道上测试,所以不应该也不允许以极限速度过弯,大概以极限速度的75%来测试就可以了,在选定的路段反覆的测试,每间隔一段时间后停下来量胎温及胎压并详细的记录。不管是以何种方式做测试,所量得的胎温记录可叁考本文所提供的附表作为调整的基本对策依据,如果你有独到的心得也欢迎来函分享读友。
弹簧硬度改变的影响
增加前后悬吊的弹簧硬度:行路性变硬,轮胎经过路面起伏时的循迹性会变差,提高抗侧倾能力
只增加前悬吊的弹簧硬度 :前轮行路性变硬,前轮的防倾阻力增加,增加转向不足或是减少转向过度的倾向
只增加后悬吊的弹簧硬度:后轮行路性变硬,后轮的防倾阻力增加,增加转向过度或是减少转向不足的倾向
减少前后悬吊的弹簧硬度:行路性变软,轮胎经过路面起伏时的循迹性可能会变好,抗侧倾能力变差
只减少前悬吊的弹簧硬度:前轮行路性变软,前轮的防倾阻力减少,减少转向不足或是增加转向过度的倾向
只减少后悬吊的弹簧硬度:后轮行路性变软,后轮的防倾阻力 减少,减少转向过度或是增加转向不足的倾向
防倾杆改变的影响
增加前防倾杆的硬度:前轮的防倾阻力增加,增加转向不足或是减少转向过度的倾向,可减少前悬吊外倾角的变化,使轮胎更紧。
增加后防倾杆的硬度:后轮的防倾阻力增加,增加转向过度或是减少转向不足的倾向,可减少后悬吊外倾角的变化,使轮胎更紧贴路面。
改变避震器的影响
增加压缩和回弹行程的阻尼系数 行路性变硬
只增加回弹行程的阻尼系数 在不平路面轮胎比较会弹离路面
只增加压缩行程的阻尼系数 防倾阻力较强,车子在弯中会变得较不安定
四:弹簧的工作原理及改装
悬挂系统存在的意义有二:隔离路面的不平使行驶更舒适;行经不平路面时保持轮胎与路面接触。而改良悬挂对"飞车党"来说只有一个目的就是改善操控性。
悬挂系统的弹簧以圈状弹簧最常用,原因是容易制作、性能效率高、价格低。弹簧在物理学上的定义就是储存能量,当我们施一固定的力于弹簧,它会产生变形,当我们移开施力则弹簧会有恢复原状的趋势,但弹簧在回弹时震荡的幅度往往会超过它原来的长度,直到有磨擦阻力的出现才会减缓弹簧回弹后造成的自由震荡,这减缓弹簧自由震荡的工作通常是避震器的任务。一般的弹簧是所谓的『线性弹簧』,也就是弹簧受力时它的压缩变形量是遵循物理学上的『虎克定律』:F=KX,其中F为施力,K为弹力系数,X则为变形量。举例来说有一线性弹簧受力40Kg时会造成1cm的压缩,之后每增加40Kg的施力1cm一定会增加的压缩量。事实上悬挂的弹簧还有其他的压力存在,即使弹簧完全伸展时弹簧仍会受到压力以便让弹簧本身固定在车上。在传统弹簧、吸震筒式的悬挂设计上,弹簧扮演支持车身以及吸收不平路面和其它施力对轮胎所造成的冲击,而这里所谓的其它施力包含了加速、减速、刹车、转弯等所对弹簧造成的施力。更重要的是在震动的消除过程中要保持轮胎与路面的持续接触,维持车子的循迹性。而改善这轮胎与路面的接触是我们改善操控性的首要考虑。弹簧的最主要功能就是维持车子的舒适性和保持轮胎完全与地面接触,用错了弹簧会造成行车品质和操控性都有负面的影响。试想如果弹簧是完全僵硬的,那悬挂系统也就发挥不了作用。遇到不平的路面时车子跳起,轮胎也会完全离开地面,若这种情况发生在加速、刹车或转弯时,车子将会失去循迹性。如果弹簧很软,则很容易出现『坐底』的情况,也就是将悬挂的行程用尽。假如在过弯时发生坐底情况则可视为弹簧的弹力系数变成无限大(已无压缩的空间),车身会产生立即的重量转移,造成循迹性的丧失。如果这部车有着很长的避震行程,那么或许可以避免『坐底』的情况发生,但相对的车身也会变得很高,而很高的车身意味着很高的车身重心,车身重心的高低对操控表现有决定性的影响,所以太软的避震器会导致操控上的障碍。假如路面是绝对的平坦,那我们就不需要弹簧和悬挂系统了。如果路面的崎岖度较大那就需要比较软的弹簧才能确保轮胎与路面接触,同时弹簧的行程也必须增加。弹簧的硬度选择是要由路面的崎岖程度来决定,越崎岖要越软的弹簧,但要多软则是个关键的问题,通常这需要经验的累积,也是各车厂及各车队的重要课题。一般说来软的弹簧可以提供较佳的舒适性以及行经较崎岖的路面时可保持比较好的循迹性。但是在行经一般路面时却会造成悬挂系统较大的上下摆动,影响操控。而在配备有良好空气动力学组件的车,软的弹簧在速度提高时会造成车高的变化,造成低速和高速时不同的操控特性。
弹簧的改装
弹簧的改装主要是要改善操控性,也就是要改用较硬的弹簧或是较短的弹簧。弹簧控制了很多有关操控的因素,弹簧的改变会造成很复杂的操控特性改变。以硬度的增加来说,可提高悬挂的滚动抑制能力,减少过弯时车身的滚动。而车高的降低则可同时降低车身的重心,减少过弯时车身重量的转移,提高稳定性。而车高的降低也可兼顾美观的效果。
渐进式弹簧
弹簧两个主要的功用:一是作为悬挂系统或底盘与地面的缓冲,也就是维持舒适性,二是使车子在行经不平路面时保持轮胎的贴地性。要达成这两个相冲突的目标需要有不同的弹力系数。保持轮胎的贴地性对操控有决定性的影响我们需要硬的弹簧设定,来保持贴地性。在遇到越颠簸的路面我们需要越软的弹簧设定。要同时达成这两个目的,使用具有复合弹力系数的『非线性弹簧』,也就是一般所谓的渐进式弹簧,是唯一可行的方法。渐进式弹簧能随着弹簧的压缩而增加弹力系数,在设计和制造上都有相当的困难度。行经颠簸路面时,弹力系数就会增加维持车身稳定。而最初的弹力系数较软则用来提高行经颠簸路面时轮胎贴地性。渐渐变硬的弹簧可避免悬挂或弹簧出现坐底的情况。这能容许使用高度比原来低的弹簧,用以降低车身重心,并且在行经颠簸路面时维持最低而且最短悬挂行程,不致发生坐底的情况。要达成渐进式弹簧就是要作出弹力系数会随这着受压缩而产生变化的非线性弹簧,因此目前的渐进是弹簧大多为采用不等螺距弹簧或圈径变化弹簧。不等螺距弹簧受压缩时会产生局部线间接触,以使有效圈数发生变化,进而造成弹力系数K的变化。经由弹簧上下圈径的变化则是改变弹力系数的最直接方法。
降低车身
改善操控最重要的方法就是降低车身重心,如此可以降低过弯时车身的重量转移和车身滚动,降低车身最简单的方法就是由弹簧着手。使用短弹簧是最简单也最快的方法。
五:避震器的工作原理及改装
避震器的功用
悬吊是大多数人改装计划的第一步,而悬吊的改装通常都是由换装一套较硬的避震器开始着手。上一期我们曾经说过弹簧最主要的功用是用来消除行经不平路面的震动,既然有了可消除震动的弹簧,那么又要避震器做什么呢?避震器它并不是用来支持车身的重量而是用来抑制弹簧吸震后反弹时的震荡和吸收路面冲击的能量。假如你开过避震器坏掉的车,你就可以体会车子通过每一坑洞、起伏后余波荡漾的弹跳,而避震器正是用来抑制这样的弹跳。没有避震器将无法控制弹簧的反弹,车子遇到崎岖路面时将会产生严重的弹跳,过弯时也会因为弹簧上下的震荡而造成轮胎抓地力和循迹性的丧失。最理想的状况是利用避震器来把弹簧的弹跳限制在一次。
阻尼
当我们以一固定的速度压缩或拉伸避震器其所产生的阻力就称为阻尼。这阻力来自于避震器作动时,活塞会把阻尼油加压使其通过小孔径的阀门,如果改变阀门的孔径就可以改变阻尼的大小。在日本自动车规格(JASO C602)规定以作动速度0.3m/s时的阻力大小来代表避震器的性能,我们称为阻尼系数,单位为Kgf,所谓较硬的避震器就是作动时可产生比较大的阻力。当我们让避震器以非常慢的速度压缩或拉伸时,它的阻力只有来自机构内部的摩擦力,阻尼油几乎不产生阻力。但是当作动速度增加时,阻力的增加会和避震器作动速度变化率的平方成正比,也就是说作动速度增为2倍时阻力却会增为4倍。
避震器的阻力可分为压缩和回弹两部份,压缩阻力和弹簧的硬度有加成效果,作动时可增加弹簧的强度,而回弹阻力则是发生在弹簧受路面冲击压缩后的反弹行程,这也是避震器存在的最大理由,它是用来抵挡弹簧压缩後再将轮胎压回地面的力量,减缓反弹的冲击并保持车辆的平稳。一般道路用的避震器,吸震行程的阻力通常远小于回弹行程,因为吸震行程的阻力太大时会影响行路舒适性,对道路用车来说冲击时和反弹时的阻尼力量比值大约是1:3,但对赛车来说则为1:2~1:1.5,较高的比值会降低舒适性,但却可改善行经不规则路的循迹性。
避震器与车身重量的转移
进弯和出弯时车身重量转移(Weight Transfer)的速度会影响操控的平衡,这影响会持续直到重量转移完成,而车身重量转移的速度是由避震器所控制,改变避震器在压缩和拉伸行程的速度可改变车身动量转移的速度。避震器越硬重量转移的速度越快,重量转移越快则车身子的转向反应也越快。
过弯时转动方向盘,轮胎会产生一个滑移角(Slip Angle),进而产生转向力,这力量作用在滚动中心(Roll Center)和重心(Center of Gravity),然后导致车身重量转移,车身产生滚动(Roll)。此时弯外轮的转向力会随着滑移角的增大及车身重量的转移而加大,车子在达到最大转向力及完成重量转移后会建立一个过弯姿势(Take a set),由于避震器控制重量转移的速度,因此也会影响建立过弯姿势的速度。由于转向反应对操控很重要,因此我们希望过弯姿势的建立越快越好,但也不可太快,必须有时间让车手去感觉过弯姿势的建立,并感受循迹性的极限,如果重量转移太快会让车手来不及去感觉,因此设定一个车身重量转移的速度让热车手去感觉极限的接近,并且有所反应是车辆悬吊设定时的重要课题。我们常说车队会依不同的车手而有不同的车辆设定,对悬吊系统设定来说,不同的车手由于驾驶技术和习惯的不同,对转向反应的感觉速度及反应速度也会不同,因此需要不同的悬吊设定,以求得车手的充分发挥。
一手太』原则
入弯时转动一次方向盘(方向盘在广东话称为太盘),就会产生一次车身的重量转移变化,建立一转向力与轮胎抓地力平衡的过弯姿势,所谓的过弯极限是出现在转向力等于轮胎的抓地力。有人在入弯后会连续的转动方向盘,这实在是天大的错误,因为这会造成车身在不平衡状态下过弯,如此车手将无从去驱使车辆逼近极限,降低了过弯的速度并存在着失控的危机。过弯时应该尽量遵循所谓『一手太』原则,判定弯道角度后将方向盘一次打到定位,让车身尽速建立平衡的过弯姿势,出弯後也是一手太让转移的车身重量回复直行时的状态。若在弯中遇到突发状况则必须Smooth的修正,避免突然加剧已处于极限边缘的重量转移,让它变得不可控制,造成车身的失控。
避震器的难题
避震器的阻尼作用是把震动冲击的能量转换成热能。假如悬吊产生大幅度的运动,相对的避震器也会产生相当大的阻力来抑制它,这阻力来自避震器的活塞会把油压入通过小的阀门,如此会把阻力变成热。避震器内部产生的热会使阻尼油加温,油加热后黏度会变稀(这反应就如同引擎机油一般)。变稀后的阻尼油会使通过油阀门的阻力变低,降低了阻尼力,我们称为『阻尼衰退』(Shock Fade)。为了避免阻尼衰退,可由加大避震器或增加阻尼油的容量来改善。所以所谓的高性能的避震器通常都具有是较大的筒径,及较大的阻尼。避震器的另一个问题是阻尼油的气泡问题,避震器作动时活塞为会对阻尼油造成搅动的效果,造成阻尼油产生气泡,气泡的产生会造成阻尼的丧失。为了对抗气泡,除了使用品质较佳的阻尼油外,制造商通常利用填充高压气体来减少气泡的产生,这做其中最具代性的产品当属Bilstein,Bilstein的产品有一项独特的设计,它有一个『气室』(Gas Chamber)用来抵抗气泡的产生,这如同用高压来抵抗你的水温问题一样(沸点与压力成正比)。此外这个气室也有对柱栓的冷却效果,因为柱栓暴露在空气中可获致冷却效果。而油封不良造成的漏油问题则是避震器损坏的一大主因,这直接关系到避震器的『耐用性』,所以较贵的避震器通常也有较好的油封。
赛车避震器
和赛车用轮胎和轮圈不同的是赛车用的避震器可用在一般道路,唯一的缺点是价格相当贵,一支赛车用的避震器往往超过万元,这和一支可能只要几百元的『原厂』避震器相比真是有如天价,据了解一套HONDA EG6 Gr.A所用的Mugen避震器约要新台币8万,而March用的NISMO竞技用避震器也大约是这个价。 赛车用的避震器通常为可调式,甚至可分别调整压缩和回弹行程的阻尼,经由调整以得到最佳的抑制缓冲效果,这项工能在做悬吊设定的尝试错误过程中扮演了重要的角色。调整时由最软的模式开始,计算它上下摆动的次数(通常超过一次),慢慢加硬直到上下摆动一次后就恢复平静,并且每次比赛前都要再依场地确认设定的正确与否。赛车避震器通常没有橡皮的止档衬垫(End Bushing)取而代之金属的球状轴承,这虽可获得在通过小震动路面时较佳的阻尼效果,提供较清晰的路面反应,但却增加了来自悬吊的震动和噪音。赛车避震器通常有接近1:1的压缩和拉伸阻尼力。此外赛车避震器的作动行程也比较短,一般车也许有10 ,高性能版也许为7 ,赛车可能只有4~5 。所以单换高性能避震器而不换行程相搭配短弹簧可能无法得到应有的效果。
避震器的改装
在大部分市售车上,制造商都会使用最软而且最便宜的避震器,以降低成本并获得一般驾驶状态下最柔软舒适的行路性。但是若要用来应付剧烈驾驶则这些避震器就无法胜任了。所谓避震器的改装实际上是换上阻尼较硬、品质较好并且能和弹簧充分配合的避震器,选择一组适合的避震器是最重要的,要在舒适性和操控性之间取得折衷尤其困难。若用在赛车上那么一切以操控为依归不必考虑舒适性,但是要用在一般道路上就必须有所妥协,这时一组阻尼可调式的避震器,就可提高实用性,尤其在道路多变的台湾,可调式避震器似乎是可认真考虑的投资。
前面说过避震器的压缩阻力和弹簧的硬度有加成的效果,一组弹簧只有一种性能表现,要改变弹簧的硬度唯有更换另一组不同弹力系数的弹簧,有了可调式避震器正可弭补此一缺憾,随路况调高阻尼也等于调硬了弹簧,毕竟调硬避震器要比换一组弹簧来的得轻松的多,甚至有所谓电子调整式避震器,只要在操作车内的旋钮即可轻易的改变阻尼,达到悬吊设定微调的效果。改装时要先选定一品质好的品牌,然后再从这品牌的系列产品中选出适合的规格型号。一支好的避震器必须有高精密度的柱栓及密闭性良好的油封,高品质的阻尼油(优质的阻尼油是阻尼衰退及气泡现象的治本之道),再加上填充高压气体的气室设计,当然最好是可调式的。目前国内常见的品牌中欧系的Bilstein、KONI以及日系的GAB都是口碑不错的主流派产品,目前的新趋势则是针对特有品牌的专属改装套件品牌,如TOYOTA的TRD、TOM';s,HONDA的Mugen,NISSAN的NISMO,都是很不错的产品。选定品牌后,就得面临搭配性的问题,在悬吊改装过程中最棘手的课题就是避震器和弹簧的搭配,如果你的车降低车身超过2英寸或是弹簧硬度增加超过20%,你就必须把避震器一并更换。硬的避震器和硬的弹簧要相互搭配,因为弹簧的硬度是由车重来决定,而较重的车需要较硬的避震器。所以在赛车或高性能车上的避震器要比一般车上的硬,用以匹配较硬的弹簧。假如避震器太软会造成车身上下的摆荡,如果太硬会造成太大的阻尼,使弹簧无法正常运作,而且会因为避震器的阻尼作用而造成行驶时车高的改变。由于避震器制造商通常不会提供他们产品太详细的相关技术资料,因此当你要为一部车作悬吊设定时你唯有不断的尝试错误。不过别担心,搭配性的问题可交给为你服务的改装店去烦恼,针对车主的需要搭配出最佳的悬吊组合是一家专业改装店的基本责任,也是顾客的基本权益。而根据经验,最适合台湾多变路况的道路版悬吊搭配,是以较软的弹簧(当然是渐进式的),配上较硬的可调式避震器,以避震器的硬度补弹簧强度的不足,加上可自由调整的阻尼,获得高度的路况适应性。